Magnetic Dipoles

Location:首页>Magnetic Assemblies>Magnetic Dipoles

Magnetic Dipoles

Magnetic Dipoles

Motors- Actuators

Dipoles consist of a pair of magnets across a gap.  They come in many shapes/sizes and the magnets are usually mounted on a steel frame (also called a yoke) for magnetic efficiency, magnetic shielding and/or mechanical strength.  Dipoles are used when an application requires a specific magnetic field strength and uniformity over a specific volume.  Pole pieces are sometimes used to enhance uniformity within the gap.

Precision Magtech has built hundreds of different types of dipoles, each optimized for a particular application.  Field strengths have ranged as high as 3.0 Tesla (30,000 Gauss).  Generally, higher fields are associated with small air gaps.  Higher uniformity is generally associated with large air gaps.

Dipoles are used to:

• Calibrate/initialize magnetic sensors

• Erase computer hard disk drives

•  Orient thin layers of magnetic material as they are deposited as thin films

• Divert or focus beams of energized particles


 
We've utilized the dipole principle in our following designs:

• EraseTrack™ Bulk Eraser

• SpeedSep™ Bulk Separator

1, Help us designs

When working with our engineering group, you might be asked:

1. What is the minimum magnetic field strength required?

2. How large a volume?

3. How large can the dipole be, does it have to fit within other devices?

4. Will the dipole be exposed to elevated or cryogenic temperatures?

5. Will the dipole be exposed to vacuum or corrosive gases/fluids?

6. Do you need the polarity marked?

2, Materials

Neodymium Iron Boron and Samarium Cobalt are often used when large magnetic fields are required.  Hard ferrite is used if cost is more important than large magnetic fields. Alnico is generally used if dipole is to be used in high temperature environment (>300°C).

3, RFQ

1.  What is the strongest magnetic field you can create?

2.  How large can the magnet be?

3.  I need a dipole to work in an oven, is this possible?

1.  To date, the strongest magnetic field we have created is 3 Tesla (30,000 Gauss) across a 5mm air gap.

2.  Our largest magnet to date is cube shaped, approximately 2 meters per side.

3.  One typically uses Alnico materials for high temperature applications.  If Alnico material is not strong enough, then the dipole should be designed around the exterior of the oven.

Online

Click here to send me a message Pre-sale Consultant

Click here to send me a message Pre-sale Consultant

Online

Free call

24-hour free consultation

Please enter your contact number, Please add area code to your landline.

Free call

Wechat sweep

Wechat
Top